How CCAs are Plugging the Equity Gap in EV Charging Infrastructure
CalCCA Webinar Team

Leora Broydo Vestel
Director of Communications

Jackson McDonough
Communications Associate
Thank you to our sponsors!

CALPINE

CALPINE ENERGY SOLUTIONS
Meet our Speakers

Peter Ambiel
Energy Programs Specialist
Peninsula Clean Energy

Sherry Bryan
Program Manager
Ecology Action
Housekeeping

• Webinar is being recorded
• All participants will be in listen-only mode
• Use the Q&A button on your screen to submit questions
• Q&A will begin following presentations
EV Charging in California
Providing greater equity to EV charging
Peninsula Clean Energy

Peninsula Clean Energy is San Mateo County’s not for profit locally-led electricity provider

Mission: To reduce greenhouse gas emissions by expanding access to sustainable and affordable energy solutions
Who is Peter Ambiel?

• Started at Peninsula Clean Energy in 2019
• Tesla, 2015 - 2019
 o Transportation program management
 o EV charging infrastructure program management
 o Covered Northeast, Southeast, Midwest regions installing 2,000+ stations
Transportation Electrification: Economic Opportunity

Gas Vehicles

San Mateo
300M gal gas/yr
$300 million/yr

Electric Vehicles

97%

40-50%

50-60%

$9 million/yr*

$150+ million*

* Excludes indirect investment via taxes
Electric Vehicles Programs at PCE

• Electric vehicle incentives (incl., add’l support for LIC)
• E-bike incentives
• Building Reach codes – Model codes and technical assistance
 o Work with SVCE is responsible for half the reach codes in the state
• EV charging and technical assistance
Charging Levels

Level 1
Typical residential application, lowest power draw, longest charge time, charger provided with most vehicles

- **120-volt**
 - 2 miles
 - 30 min

Level 2
Typical residential and commercial applications, medium power draw and time to charge

- **240-volt**
 - 10 miles
 - 30 min

Level 3 – DC Fast Charger
Typical commercial applications, highest power draw fastest time to charge

- **208-600 volts**
 - 90 miles
 - 30 min
The Need for EV Charging

California’s charging goal: 250,000 EVSE by 2025

Figure 4: Installed and Projected Charger Counts Compared With Charger Needs for 1.5 Million Light-Duty ZEVs in 2025 and 8 Million Light-Duty ZEVs in 2030

- Installed (2020): 70k chargers installed as of late 2020
- Projected (2025): 123k additional installations* by 2025, totalling 193k chargers statewide
- Gap (2025): Net gap of 57k chargers to 250k goal for 2025
- Gap (2030): Net gap of 972k to projected 2030 need of 1,164k chargers

* Based on allocated funding through 2025 as of February 2021

Source: CEC and National Renewable Energy Laboratory
Challenges with EV Charging

• Multifamily access is especially critical
• Principal gating issue is cost
• Level 2 (L2) per port costs:
 o ~$5,000 (MCE) to ~$18,000 (PG&E)
 o Installations are typically overbuilt for daily driving needs
• Major equity implications
Principles & Use Cases

Level 1, Power Management, & DC Fast Charging
Principles for Increasing Charging Equity

- **All multi-family units have electrified space**
- Minimum power threshold of 1.9 kW
- Encourage/support Level 1
- Design all Level 2 ports with Load Management
Level 1 Charging: Dedicated Service/ Lowest Cost

• Level 1 charging meets daily driving needs at the lowest installation cost (~$1,600/ port)
 o ~50% of EVs currently charge with L1 (CARB)
 o 40-50 miles of range per 10-hour overnight charge
 o San Mateo County residents drive ~30 miles/day on average

• Implementing L1 in multifamily dwellings
 o Level 1 installed in assigned parking
 o Power managed Level 2 installed in shared parking

Franklin-Templeton, San Mateo
Level 2 Power Management

Definition: Multiple charging stations share the same electrical circuit

Circuit 40A (32A draw), 240V, 7.68 kW available

Unmanaged EVSE load = 160A, 28.8K (4x oversubscription)

When one EV is actively charging, all circuit power is delivered to that station

Power is divided evenly as additional EVs are actively charging on the same circuit

Minimum of ~60+ miles of range provided with overnight charge at MUDs. Real-world charge will be higher due to power balancing.
Peninsula Clean Energy's EV Charging Infrastructure Program & Strategy

For detailed design principles, case studies, policies: https://www.peninsulacleanenergy.com/ev-technical-resources/
PCE EV Ready Program

Overview:
• $28M+ infrastructure program targeting 3,500 ports installed by 2024
• Supports workplaces, multi-unit dwellings, public agencies

Key Elements
• Free technical assistance to streamline site design, increase port deployment, & improve the customer experience
• EV charging station rebates for Level 1 & Level 2 ports
• Trained network of union contractors
EV Ready Program Strategy & Targets

Strategy

- Design EV charging projects with power managed Level 2 & Level 1 charging to increase charging deployment and minimize costs
- Leverage low cost L1 charging for older, smaller MUDs

Targets

<table>
<thead>
<tr>
<th>Program Deployment Targets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-Family L1</td>
</tr>
<tr>
<td>Multi-Family L2</td>
</tr>
<tr>
<td>Workplace/ Public L2</td>
</tr>
<tr>
<td>DC Fast Charging</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>
Retrofit Case Study: Low Power Cost Savings

Minimum Costs
- Level 1: ~$1,600/port
- Level 2: ~$3,600/port (with power mgmt.)

Cost uncertainty:
- PG&E upgrade costs can vary widely if neighborhood transformer upgrade is required, minimized likelihood with L1

San Mateo Apartments Example (17 ports)

<table>
<thead>
<tr>
<th>Option</th>
<th>EVSE</th>
<th>Installation</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 L2 + 15 L1</td>
<td>$14,500</td>
<td>$76,100</td>
<td>$90,600</td>
</tr>
<tr>
<td>17 L2</td>
<td>$42,500</td>
<td>$209,000*</td>
<td>$251,500+</td>
</tr>
</tbody>
</table>

This project will have an upgraded main panel and new subpanel.

* Includes rough estimate to add new service from PG&E, this would be higher if new transformer is needed.
ACCELERATING EQUITY IN ELECTRIC VEHICLE OWNERSHIP AND CHARGING AT MULTI-FAMILY PROPERTIES
19,000 Commercial Customers

665 MUD Properties

95 Employees

251ST EV Charging Station Installation in Progress

Serving Utilities, National Retail Brands, Governments, Private Sector
EV EQUITY – WHY THE NEED?
Clean transportation is an equity issue!

- Lowest-income earners spend 4X more of their income on gasoline and car maintenance.
- Tailpipe emissions are some of the main sources of pollution in disadvantaged communities.
- Many equity incentive programs exist, but households still face major barriers to access.
The MUD Charging Problem: Market Failure

Approximately 60% of people in the Bay Area live in MUDs but less than 10% of electric vehicles are owned by MUD residents.

MUD Property Owners
- No return on investment
- Large hassle factor
- Multiple misaligned rebates
- Limited available panel capacity

Drivers (tenants)
- 25-35 miles of charge daily
- Certainty of access

EVSPs
- Business models require high throughput
- Focused on higher power EVSP
- Revenue doesn’t justify investment

Funders
- Solution must meet policy criteria
- Need a price point that can be rolled out in mass
Key Findings from EBCE Market Study

18. BUDGET - What amount would your organization be willing to cost share for EV charging station installation per property without going into a new budget cycle?

More Details

- $0 - There is no budget availbl... 19
- $0-$1,000 1
- $1,000-$2,000 1
- $2,000-$3,000 1
- $3,000-$4,000 0
- $4,000-$5,000 1
- $5,000-$10,000 0
- More than $10,000 0
- Don't know 10
- Other 4
Key Findings from EBCE Market Study
Only 48% of MUD properties had at least 60 amps of house panel capacity. The majority had less power or needed a panel upgrade. Power at house panel in “competition” with other electrification programs for MUDs (Heat Pump Water Heaters)
Summary of Key Findings from EBCE Study

- 60% of MUD operators surveyed have $0 budget for EVSE
- Tenant requests for access to EV Charging are higher in moderate and higher income MUDs.
- Affordable housing MUD operators that have installed EVSE for reach codes report under-utilization.
- Affordable housing MUD operators need to charge by kWh – not a rent adder
- Larger MUD operators prefer 3rd party payment/maintenance system
- MUD operators need more info on maintenance costs before agreeing to install EVSE.

More at https://ebce.org/community-innovation-grants/
How can CCAs Increase Equity of Opportunity for EV Ownership?

• Programmatic Solutions – Turn-Key Direct Installation for MUDs
• Equity and equity - Include properties with fewer than 20 units
• Address "harder to reach" properties – Affordable and moderate-income MUDs - regardless of geography
• Pair EVSE installation with ZEV Demand Generation Programs
** Hassle Free and No Cost for MUD Operator **

- **Provide turnkey design>permit>installation support (one signature)**
- **Use existing electrical capacity (some panel upgrades ok)**
 - Install networked L1 and L2 with load sharing
 - If installing L1, upsize conduit and conductors for future L2
 - Do not require a minimum port count per site.
- **Prioritize electrifying assigned parking spaces (some shared ok)**
- **Do not require minimum electricity throughput for the first years**
- **Include on-site EV purchase encouragement & technical assistance**
MUD Decentralized Low Power Solution
MUD Centralized Low Power Solution
MUD Resident Engagement

• Door-to Door Canvassing
• Flyers in Community Spaces
• Community Events
• E-mails through Community Manager
Purchase Guidance Support for Low-Income Renters

Purchase Guidance Programs streamline the pathway to electric vehicle ownership for low-income individuals by providing one-on-one assistance that engages and educates underserved residents about how electric vehicles can affordably meet their driving needs.
OUR MISSION: LESS EMISSIONS

Contact Information

Mahlon Aldridge
VP Strategy
maldridge@ecoact.org
831-227-9257

Sherry Lee Bryan
Program Manager
sbryan@ecoact.org
(408) 601-9756
Thank you and stay well!

Leora Broydo Vestel
CalCCA Director of Communications
leora@cal-cca.org